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izing the pa we find the bi,. Upon execution of these calculations cases are certainly 

encountered when the scalars c,, in equalities of the type (3.4) turn out to be zero. 
This means that fia is a linear combination of the bi, (A > p). In such cases the vec- 
tors bik should be omitted and the next vectors bi, h+l should be considered. 
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Sufficient conditions are presented for the stability of rotational motion of a variable- 

mass body in a central Newtonian force field. The equations of body motion around a 
fixed point are written under assumptions made by M. Sh. Aminov. 

The Chetaev method, as well as the V. V. Rumiantsev theorem on the stability of mo- 

tion relative to part of the variables, are used in investigating the stability of rotational 
motions of a solid in the Lagrange case. 

Let us consider a symmetric body (A = B) of variable mass on whose axis of symmetry 
a gyroscope with kinetic moment lo is placed and there is the center of mass of the body 

at a distance ZJr) from a fixed point 0. 

If the body is in a central Newtonian force field, the Euler-Poisson equations, under 
the assumptions considered in a-31, have the form 

P'=(1--6)qr-vq+'/zurz-~((i--)rlrr (V=10/A) 

q'zz(6 --)Pr+v- ‘/z 071 t- p (1 - 6) ws, r’ = 0 (6=C/A) (0.U 

rl’ = v2 - QTS, 72’ = PTS - q1, Ta’ = PT1- pya (a = 2MgZ, /A) 

Here v, 6, a are some functions of time, P is a constant. Evidently, one of the solu- 
tions of (0.1) P = q = y1 = yz = 0, r= ro, y3= 1 (0.2) 

corresponds to body rotation around an axis of symmetry coinciding with the direction 
to the center of attraction, at a constant angular velocity. 

1. We obtain sufficient conditions for the stability of the motion (0.2) from the equa- 
tion for the angle of nutation 9. It follows fromtthe equati$s of motion (0.1) 

~~+q'+dTs-~(i-8)T~~--Srado -+a~=C1 

0 0 
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1 (cont. ) 
pn + qn + 06 + v) TS - 

s 
red (r8 -t v) = CZ. r = ro 

where C1, Cs, ro are constants. We obtain the first relationship in (1.1) from (0.1) by 
multiplying the first two equations by p and q , respectively, and adding, and the second 

by multiplying the first and second equations of (0.1) by y1 and ya , respectively, the 
fourth and fifth by p and 4 , respectively, and adding. We then integrate by parts in the 

integrals obtained. 

Expressing p, q, r, y,, ya, ys in terms of the Euler angles $, I#, 8 we rewrite the rela- 

tionships (1.1) as : 1 2 
JI’*sin~8+8’s+acos6-~(l-~)cosz8- coseda 

s -4 
cos’ eda = Cl (f .2) 

0 0 

aj* sin’ 6 -I- (r68 + v) co9 8 - 
s 

ccs ed (~06 + v) = CS 
0 

Eliminating the derivative q from (1.2). with the notation eos O=u , yields the equa- 

tion 
u** = (1 - 9) 

E 
Cl - au + B (i - a) ua + \ uda + p 5 uW] - 

ii ” 

As is seen from (1.3). a change in the function IL within the interval (-1, I), where 

f(u) > Q, corresponds to real motion of a body around a fixed point. 

A change in the function u within the interval (i - E, 1), where a is an arbitrarily 

small positive quantity (e < 1) , corresponds to the motion (0.2) of a body whose stabi- 
lity is investigated. 

Chetaev [4] and Aminov @] showed in investigations of the rotational motions of pro- 

jectiles that the sufficient condition for I( to be close to unity, i.e. the stability of the 

motion (0.2), is that the roots of the polynomial a(z) = - F(1 -e-z) are negative, 

where F(u) > t(u). For a function f(u) of the form (1.3) the polynomial F(u) > flu) is 
easily found if a, v and 6 are monotone functions of time. 

For definiteness, let us set a’ Q 0, d’ > 0, v’ > 0. Then 

f 

s c 

t 

I& < u,,,,da < (1 - e) (a - a~), 
s K 

dda G g_da = a - a0 
0 i 0 i 

(1.4) 
1 

Sud(r&+v)>i u,,,,d( ro6 + v)=(i- e)(ro&+ v- r&o -vo) 

0 0 

where uo = a(O), 60 = a(O), v. = v(0). Under conditions (1.4) the function f(u) will 
evidently not exceed a fourth degree polynomial in u 

F(u) = (1 - ~a)[p(i - a)d - ou + c, + (1 - e) (a - ~0) + (1.5) 

+ p(a - a,)] - [c2 - (roa + V)U + (1 - e) (rob + v - roao - v0)P > f(u) 

The polynomial Q(z) whose roots must be investigated, becomes 

~(2) = - F(1 - e - z) = kz4 + 1~9 + mz’ -I- nz i- b (1.6) 
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k = p(i -a), l=a - 4/d - e) (i - d) 

m = boa + v)* + Cl +5p(i - 6) (i - e)* + p(d - 60) - 

- Z;ep(i - e) (1 - 6) - 2(i - e)a- (i - e) a0 

n = 2(roh + v)IC* - (i - e) (rob0 + ~011 + 2(i - e)* a0 - 2p (1 - e) (6 - 6,) - 

- 2(1 - e)C, - 2p(i - e)O(1 - d) - dep(i- e)‘(i - 6) - 2e(i - e)a 

b = [Cr - (1 - e) (rob0 + vO)la - 2e(i - e) Ip(i - 6) (1 - e)* + 

+ Cl - (i - eb0 + 14 - 60) 

According to the Hurwitz criterion, the inequalities 

l> 0, lm - kn > 0, n(lm - kn) - lab > 0 

(Im - kn) (ns - bm) - bPn > 0 (1.7) 

are the conditions for the roots of the polynomial (1.6) to be negative. 
The inequalities (1.7) will be sufficient conditions for the stability of motion (0.2). 

2. Sufficient conditions for the stability of motion (0.2) are obtained by using Liapu- 

nov functions. In perturbed motion we set 

p = q, Q = x2, r = ro + 23, y1 = i/l, 1’2 = Y2, Y3 = 1 + Y; (2.1) 

Then the perturbed motion equations for the variables tr, Yr, % Ya have the form 

21’ = arz2 + azcJr + {Z), al = (i - 6) r0 - v 

a!?.’ = - arzr - a2yr + {2), a2 = %a - B (i - S) (2.2) 

yr’ = r0y2 - t + (,2), ~2’ = ZI - royI+ {2) 

where (,2} are terms of second and higher order in the perturbations. We take as Liapu- 
nov function 

v = azr2 + 2pay1+ Tyr2 + uz12 + 2PzzY0 + YYza 
( 

az2 +r 
P=-,,_, 1 

(2.3) 

Here a, y, b are continuous and bounded functions of time together with their deri- 

vatives. 
Because of the perturbed motion equations (2.2) the derivative of the function (2.3) 

takes the form V’ = 61.219 + fp’zryr + 7’yr* + ciz20 + Wz2ys + T’Ya’ + 4.3\ (2.4) 

where (3) are terms of third and higher order in the perturbations. Under the conditions 

a>O, a’<O, ay - Ba>O, a’?’ - B” > 0 (2.5) 

The function V is positive definite, and F is negative definite in the variables zlr x2, 

Yl, YP. 

According to the theorem proved in [5]. the motion (0.2) is stable relative to part of 
the variables p, q, ~1, ?a upon compliance with the inequalities (2.5). Then stability 
relative to the variables r and y3 follows from the third equation of (0.1) and the trivial 
integral Tla + 72’ + y32= i. 

In particular, fi = - A/(r0d + v), y = A(i - a0) for a = A and we obtain sufficient 
conditions for the stability of the motion (0.2) presented in [3]. In the case under con- 
sideration, a set of such conditions can be obtained. Thus in the case v’ < 0, 6’ < 0 , 
we can take 
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a = d + v, Y = p(rod + v), - p = pi3 + l/,a 

Then conditions (2.5) have the form 

IL (‘08 + v)a - (l45 + ‘lzu) > 0, lb (?JB’ + v’)’ - (@’ + ‘/,a.)’ > 0 

The motion (0.2) of a body is hence stable. 
(2.6) 
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Kinematic interpretation of the motion of a body is based on kinematic equations put 
forward by Kharlamov [1]. The moving angular velocity hodograph was considered in 
our earlier paper p] in which we classified all the characteristic forms of the moving 
hodograph. In the present paper we shall consider the stationary hodograph in all these 
cases and give a geometric picture of the motion of a body. 

1. The motion of the body can be described as slipless rolling of the moving axoid 
of angular velocity vector on the stationary axoid. The moving hodograph in the Hess’ 

solution was already fully studied in r2], and we shall make use of the results of this study 

and take the same notation. 
The moving hodograph lies in the plane o1 = */2 coa; its projection on the plane 

or = 0 is the curve s the equations of which in polar coordinates Q and cp(or = p cos cp, 
o, = p sin 0) have the form 

PP’ = Y-m p%p’ = - ps cos cp + k 

(ftP)=p+-(+h)l-krj 0.1) 

the dot superscript denotes differentiation with respect to the dimensionless time T. 


